"""
Polynomial regression is a type of regression analysis that models the relationship
between a predictor x and the response y as an mth-degree polynomial:
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
special case of multiple linear regression. Therefore, we can use ordinary least squares
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
for polynomial regression:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|
In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
decomposition (SVD):
β = VΣ⁺Uᵀy
where UΣVᵀ is an SVD of X.
References:
- https://en.wikipedia.org/wiki/Polynomial_regression
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
- https://en.wikipedia.org/wiki/Singular_value_decomposition
"""
import matplotlib.pyplot as plt
import numpy as np
class PolynomialRegression:
__slots__ = "degree", "params"
def __init__(self, degree: int) -> None:
"""
@raises ValueError: if the polynomial degree is negative
"""
if degree < 0:
raise ValueError("Polynomial degree must be non-negative")
self.degree = degree
self.params = None
@staticmethod
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
"""
Constructs a polynomial regression design matrix for the given input data. For
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
the Vandermonde matrix
|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
@param data: the input predictor values x, either for model fitting or for
prediction
@param degree: the polynomial degree m
@returns: the Vandermonde matrix X (see above)
@raises ValueError: if input data is not N x 1
>>> x = np.array([0, 1, 2])
>>> PolynomialRegression._design_matrix(x, degree=0)
array([[1],
[1],
[1]])
>>> PolynomialRegression._design_matrix(x, degree=1)
array([[1, 0],
[1, 1],
[1, 2]])
>>> PolynomialRegression._design_matrix(x, degree=2)
array([[1, 0, 0],
[1, 1, 1],
[1, 2, 4]])
>>> PolynomialRegression._design_matrix(x, degree=3)
array([[1, 0, 0, 0],
[1, 1, 1, 1],
[1, 2, 4, 8]])
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
Traceback (most recent call last):
...
ValueError: Data must have dimensions N x 1
"""
rows, *remaining = data.shape
if remaining:
raise ValueError("Data must have dimensions N x 1")
return np.vander(data, N=degree + 1, increasing=True)
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
"""
Computes the polynomial regression model parameters using ordinary least squares
(OLS) estimation:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
function computes X⁺ using singular value decomposition (SVD).
References:
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Singular_value_decomposition
- https://en.wikipedia.org/wiki/Multicollinearity
@param x_train: the predictor values x for model fitting
@param y_train: the response values y for model fitting
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
doesn't exist
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.params
array([-5., 3., -2., 1.])
>>> poly_reg = PolynomialRegression(degree=20)
>>> poly_reg.fit(x, y)
Traceback (most recent call last):
...
ArithmeticError: Design matrix is not full rank, can't compute coefficients
Make sure errors don't grow too large:
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
>>> poly_reg.fit(x, y)
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
True
"""
X = PolynomialRegression._design_matrix(x_train, self.degree)
_, cols = X.shape
if np.linalg.matrix_rank(X) < cols:
raise ArithmeticError(
"Design matrix is not full rank, can't compute coefficients"
)
self.params = np.linalg.pinv(X) @ y_train
def predict(self, data: np.ndarray) -> np.ndarray:
"""
Computes the predicted response values y for the given input data by
constructing the design matrix X and evaluating y = Xβ.
@param data: the predictor values x for prediction
@returns: the predicted response values y = Xβ
@raises ArithmeticError: if this function is called before the model
parameters are fit
>>> x = np.array([0, 1, 2, 3, 4])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.predict(np.array([-1]))
array([-11.])
>>> poly_reg.predict(np.array([-2]))
array([-27.])
>>> poly_reg.predict(np.array([6]))
array([157.])
>>> PolynomialRegression(degree=3).predict(x)
Traceback (most recent call last):
...
ArithmeticError: Predictor hasn't been fit yet
"""
if self.params is None:
raise ArithmeticError("Predictor hasn't been fit yet")
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
def main() -> None:
"""
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
dataset
>>> pass # Placeholder, function is only for demo purposes
"""
import seaborn as sns
mpg_data = sns.load_dataset("mpg")
poly_reg = PolynomialRegression(degree=2)
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
weight_sorted = np.sort(mpg_data.weight)
predictions = poly_reg.predict(weight_sorted)
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
plt.xlabel("Weight (lbs)")
plt.ylabel("Fuel Efficiency (mpg)")
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
main()